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We develop two simplified dynamical models with which to explore the conditions under which temporal
differentiation leads to increased system output. By temporal differentiation, we mean a division of labor
whereby different subtasks associated with performing a given task are done at different times. The idea is that,
by focusing on one particular set of subtasks at a time, it is possible to increase the efficiency with which each
subtask is performed, thereby allowing for faster completion of the overall task. In the first model, we consider
the filling and emptying of a tank in the presence of a time-varying resource profile. If a given resource is
available, the tank may be filled at some rate rf. As long as the tank contains a resource, it may be emptied at
a rate re, corresponding to processing into some product, which is either the final product of a process or an
intermediate that is transported for further processing. Given a resource-availability profile over some time
interval T, we develop an algorithm for determining the fill-empty profile that produces the maximum quantity
of processed resource at the end of the time interval. We rigorously prove that the basic algorithm is one where
the tank is filled when a resource is available and emptied when a resource is not available. In the second
model, we consider a process whereby some resource is converted into some final product in a series of three
agent-mediated steps. Temporal differentiation is incorporated by allowing the agents to oscillate between
performing the first two steps and performing the last step. We find that temporal differentiation is favored
when the number of agents is at intermediate values and when there are process intermediates that have long
lifetimes compared to other characteristic time scales in the system. Based on these results, we speculate that
temporal differentiation may provide an evolutionary basis for the emergence of phenomena such as sleep,
distinct REM and non-REM sleep states, and circadian rhythms in general. The essential argument is that in
sufficiently complex biological systems, a maximal amount of information and tasks can be processed and
completed if the system follows a temporally differentiated “work plan,” whereby the system focuses on one
or a few tasks at a time.
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I. INTRODUCTION

Differentiation and the division of labor is a ubiquitous
phenomenon characterizing the emergence of complex sys-
tems. Different enzymes, nucleic acids, and other biopoly-
mers are involved in the proper function of living cells. In
multicellular organisms, cells differentiate and specialize in
the performance of one or a few tasks. At higher levels of
complexity, multicellular organisms �e.g., humans� can them-
selves form highly differentiated structures �e.g., a modern
networked economy�, where each organism performs one or
a few tasks �1–13�.

As a result of the ubiquity of the division of labor in
biology, considerable experimental and theoretical work has
been devoted to understanding both its genetic basis and the
selection pressures that give rise to such behaviors �14–21�.
In a general sense, division of labor is favored when trans-
port costs associated with delivering process intermediates to
the appropriate agents are small. Therefore, division of labor
is generally favored at high population densities, though this
may not always be the case �10,22�.

In this paper, we wish to discuss another form of differ-
entiation that we term temporal differentiation. Temporal dif-
ferentiation refers to a division of labor where a given task is
broken up into several subtasks and the various subtasks are

performed at different times. That is, with temporal differen-
tiation, a given set of agents performs all the subtasks asso-
ciated with a given task. However, these agents concentrate
their efforts on one set of subtasks for a certain period of
time and then concentrate their efforts on another set of sub-
tasks for another period of time. This is in contrast to the
“standard” picture of division of labor, whereby all subtasks
associated with a given task are performed simultaneously
by different sets of agents.

Although the concept of time-varying strategies has been
considered before �23–25�, temporal differentiation as a form
of division of labor has thus far received little to no attention.
This is not surprising, since temporal differentiation is a
subtle form of division of labor. Nevertheless, temporal dif-
ferentiation is also a ubiquitous phenomenon. At the level of
task completion by humans, it is quite common that various
tasks are often done in intermittent blocks. Examples include
paying of bills, housekeeping chores, and the procurement of
food. Such forms of temporal differentiation are likely preva-
lent in other organisms, since a temporally differentiated la-
bor strategy is a natural approach in many contexts for in-
creasing system efficiency �i.e., it makes sense to have a
routine or “work plan” and not try to do everything at once�.

Another possible manifestation of temporal differentiation
is the phenomenon of sleep, and, more generally, of circadian
rhythms. In regards to sleep, it may be readily observed that
sleep is prevalent in organisms with highly complex central
nervous systems. It is characterized by periods of high levels*emanuelt@bgu.ac.il
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of alertness, followed by periods during which the brain goes
into an unconscious state.

One theory, due to Crick and Mitchison, for the existence
of sleep, is that sleep is a time when the brain engages in
various garbage collection activities �26�. More specifically,
sleep is a time when the brain sorts through and consolidates
information accumulated from the previous period of wake-
fulness �27–32�. Increasing evidence suggests that Crick and
Mitchison’s basic hypothesis may be correct �33�. Neverthe-
less, while this “garbage collection” hypothesis provides an
explanation for what happens during sleep, it does not ex-
plain the selection pressures driving the emergence of this
phenomenon.

In the presence of a day-night cycle, it may be optimal for
a highly complex brain to engage in information collection
activities during the day, when light information is most
available, and then to engage in information consolidation
�i.e., “garbage collection”� activities at night, when light in-
formation is far less available. The idea is that, by concen-
trating on information collection when it is available and
information consolidation when external information is less
available, the brain can process a maximal amount of infor-
mation in a given amount of time, which presumably confers
a survival advantage to the organism.

However, such an explanation is incomplete, since some
organisms are nocturnal. Further, what is interesting about
the sleep state itself is that it is divided into distinct, alter-
nating cycles of REM and non-REM sleep �where REM
stands for “rapid eye movement”� �26,27,34�. However, not
all sleeping organisms exhibit REM and non-REM sleep. In
particular, the organism Tachyglossus aculeatus, a represen-
tative of the earliest branch of mammalian evolution �the
monotremes�, combines both REM and non-REM sleep into
one sleep state �35�. This suggests that REM and non-REM
sleep are not fundamental to sleep itself, but rather emerged
via the differentiation of a single, older sleep state.

Therefore, it is possible that temporal differentiation of
various brain tasks leads to improved brain function in
higher organisms, independent of any external day-night
regulation cycle. The existence of a day-night cycle simply
regulates the optimal start times for each task period. Fur-
thermore, it is also possible that temporal differentiation is
favored the more work needs to be completed within a given
time period. In the context of REM and non-REM sleep, it is
possible that mammals with simpler brains can perform the
information consolidation tasks in one sleep state. However,
for larger, more complex mammalian brains, the amount of
information consolidation to be performed becomes suffi-
ciently large that it becomes more efficient to divide the vari-
ous information consolidation subtasks into two distinct
sleep states.

Motivated by these various considerations, we present
two highly simplified models describing the processing of
some resource into a final product. The first model considers
the filling and emptying of a tank with a time-varying re-
source flow. Filling the tank corresponds to the input of ex-
ternal resource or information into a system, while emptying
the tank corresponds to processing the resource or informa-
tion. Not surprisingly, the model considered here is able to
capture certain basic features of the wake-sleep cycle, such

as its synchronization with the day-night cycle �at least for
diurnal organisms�.

The second model considers the processing of some re-
source into a final product via a series of agent-mediated, or
in the language of chemical kinetics, enzyme-catalyzed,
steps. In contrast to the tank-filling model, where the re-
source flow is time varying to mimic a day-night cycle, in
this second model the resource flow is constant. The point of
this second model is to illustrate how temporal differentia-
tion can lead to increased output even when the inputs to the
system are not time varying.

While the connection between temporal differentiation,
sleep, and circadian rhythms is speculative, what is interest-
ing is that if sleep is indeed an example of a temporally
differentiated labor strategy that optimizes brain function,
then it suggests that techniques from operations research,
game theory, and mathematical economics could be used to
model various aspects of sleep �37–39�. Because these fields
have been fairly well developed, a fundamental connection
between sleep and temporal differentiation could pave the
way for the development of sophisticated models that can
make quantitative predictions about various aspects of brain
function that are related to the phenomenon of sleep.

We point out that while mathematical models related to
sleep have been previously developed �40–43�, such models
have primarily focused on the dynamics associated with the
underlying pathways controlling the wake-sleep cycle. How-
ever, the need for such pathways has not been addressed: nor
were the models framed in a manner illustrating a fundamen-
tal connection between sleep and problems in engineering
and behavioral sciences.

This paper is organized as follows: In the following sec-
tion �Sec. II�, we develop the tank-filling model. We develop
a canonical algorithm for maximizing the amount of resource
that is processed in a given time interval and rigorously
prove that this algorithm is indeed optimal. In Sec. III, we
use our algorithm to construct optimal fill-empty profiles for
several resource availability profiles and compare these fill-
empty profiles to known aspects of the sleep-wake cycle. In
Sec. IV, we develop our three-process model and derive the
limiting form of the model when the total number of en-
zymes is small. We solve our model with and without tem-
poral differentiation. We compare both the temporally differ-
entiated and nondifferentiated strategies, and determine the
regimes where one strategy is expected to be favored over
the other. In Sec. V, we discuss our results in the context of
sleep, circadian rhythms, and other examples of temporal
differentiation. Finally, in Sec. VI we summarize our main
conclusions and discuss plans for future research.

II. TANK-FILLING MODEL

A. Model description

Consider a tank that can be filled and emptied with some
unspecified material �see Fig. 1�. At any given time t, an
external resource is available or it is not. We denote the
resource availability profile by a function ��t�, where ��t�
=1 if a resource is available at time t and 0 if not. If ��t�
=1, then the tank may be filled at a rate rf. The tank may also
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be emptied at a rate re as long as it is not empty. Over any
finite interval �t1 , t2�, we assume that ��t� is discontinuous at
a finite number of points. This implies that ��t� may be taken
to be a piecewise constant function.

At any given time t, we assume that the tank is carrying
out one of the fill or empty tasks, but that the tasks cannot
occur simultaneously. We let � f�t� denote the fill profile func-
tion, so that � f�t�=1 if the tank is in the fill mode at time t
and � f�t�=0 otherwise. We let �e�t� denote the empty profile
function, so that � f�t�+�e�t�=1 at all times. As with ��t�, we
assume � f�t� and �e�t� are piecewise constant, with a finite
number of discontinuities over a finite interval.

We also let nT�t� denote the total amount of material in the
tank at time t and nP�t� denote the total amount of material
that has been processed through the tank at time t. It should
be apparent that

dnT

dt
= rf� f�t���t� − re�e�t��1 − �nT,0� ,

dnP

dt
= re�e�t��1 − �nT,0� , �1�

where �nT,0=1 if nT=0 and 0 otherwise.
Although we assume that the fill and empty modes of the

tank cannot occur simultaneously, a simultaneous fill-empty
profile can be approximated with an arbitrary degree of ac-
curacy by considering a profile where the tank oscillates be-
tween the fill and empty modes on sufficiently short time
scales. Therefore, there is no loss of generality in assuming
that the fill and empty modes occur separately. If there is a
time associated with switching between the two tasks, then
we do need to explicitly consider a mode where the fill and
empty tasks operate simultaneously. However, for the pur-
poses of this paper, we assume that the switching time be-
tween tasks is negligible.

Finally, while we are considering the filling and emptying
of a tank, it should not be assumed that the actual fill-empty
dynamics is necessarily governed by the rules of fluid me-
chanics. The external resource simply represents an input
into a system, represented by a tank. The above system of

differential equations define a highly simplified dynamics
that broadly represents the dynamics associated with the in-
put and processing of some resource.

B. Relation of the tank-filling model to biological networks

Consider a system that is capable of engaging in two
tasks: �i� an input task, whereby external resource is input
into the system, and �ii� a processing task, whereby the re-
source is processed for use by the system.

If we are dealing with a biological system, then we as-
sume that the function of each task is mediated by some
protein. For the input tasks, we denote the protein by P1,
while for the processing tasks, we denote the relevant protein
by P2. Now, P1 and P2 are encoded in a genome, with cor-
responding genes denoted by G1 and G2. If we assume a total
transcription plus translation rate of kT, then when only one
gene is active, the active gene Gi produces protein at a rate
kT, while when both genes are active, each protein is pro-
duced at a rate �1 /2�kT. We assume that at least one of the
genes is active at any given time �see Fig. 2�.

Furthermore, we assume that the proteins have a decay
rate given by a first-order constant kd. Therefore, if �1�t� is
defined to be 0 if gene G1 is off, and 1 if gene G1 is on, and
�2�t� is defined analogously for gene G2, then, letting nP1

and
nP2

denote the number of proteins in the system at a given
time, we have

dnP1

dt
=

1

2
��1�t� − �2�t� + 1�kT − kdnP1

,

dnP2

dt
=

1

2
��2�t� − �1�t� + 1�kT − kdnP2

. �2�

FIG. 1. �Color online� Illustration of a tank that may be filled at
a rate rf when an external resource is present or emptied at a rate re

when there is material in the tank to empty.

FIG. 2. �Color online� Illustration of the two-gene resource pro-
cessing model discussed in this paper. The dark blue rectangle de-
notes gene G1 �black rectangle�, and the dark blue circles denote
protein P1 �black circles�, while the green rectangle �white rect-
angle� and circles �white circles� denote gene G2 and protein P2,
respectively. The red circles �small black circles� denote the avail-
able external resource, which enters the system via P1. The proteins
P2 process the resource. Processed resource is denoted by the small
blue-green circles �small white circles�.
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Now, if we let ��t� denote a resource availability profile,
defined to be 1 when an external resource is available and 0
otherwise, then in the simplest assumption the rate at which
resource enters the system is proportional to nP1

and the rate
at which resource is processed is proportional to nP2

. If n1

denotes the amount of unprocessed resource at any given
time t and n2 denotes the amount of processed resource, then
we have

dn1

dt
= r1nP1

��t� − r2nP2
�1 − �n1,0� ,

dn2

dt
= r2nP2

�1 − �n1,0� , �3�

where �n1,0=1 if n1=0 and 0 otherwise.
Note then that if ��t� experiences oscillatory periods of

resource availability, then keeping both genes on at all times
may not lead to an optimal processing of resource. The rea-
son for this is that when ��t�=1, the resource only enters the
system at half the maximal rate. Depending on the resource
availability profile, it may be optimal for the system to only
take in an external resource when it is available and then
process that resource during periods when the resource is
significantly less available.

We note that for finite values of kT and kd, switching from
one task to another involves a transient during which the
proteins involved in one task degrade and the proteins for the
other task reach their steady-state levels. However, if kT ,kd
→� in such a way that kT /kd is fixed, then there is no time
associated with switching tasks. In this case, we may as-
sume, for simplicity, that only one task can be active at any
given time, since a profile where both tasks are on over a
time interval can be approximated to arbitrary accuracy by a
profile that rapidly oscillates between one task and the other.

C. Optimal fill-empty profiles

Given a resource availability profile ��t� over some time
interval �0,T�, we wish to determine the fill-empty profile
�= �� f ,�e� that maximizes nP�T�, given the initial conditions
nT�0�=nP�0�=0. As a notational convenience, we let n�,T�t�,
n�,P�t� denote the nT and nP values associated with the fill-
empty profile �.

A natural fill-empty profile, denoted �0= �� f ,0 ,�e,0�, is de-
fined by the following prescription: Fill whenever ��t�=1
and empty whenever ��t�=0 as long as nT�t��0. Continue
with this fill-empty profile until nT�t�=re�T− t�, at which
point the tank should be emptied until time T. Let t�0

denote
the critical time at which emptying until time T begins. Then
for notational convenience, we define I1= �0, t�0

� and I2

= �t�0
,T�.

We can prove that �0 yields a maximal value for nP�T�.
However, because the proof makes use of some definitions
that will be used in the subsequent analysis, we will first
provide these definitions before going on to the proof itself.

We begin by defining, for an arbitrary fill-empty profile �
over some set S, the quantities Tf�S ;��, Te�S ;��, and

Tw�S ;��, as follows: We define S f = �t�S ���t�=1
and � f�t�=1�, Se= �t�S �n�,T�t��0 and �e�t�=1�, and Sw

=S / �S f �Se�. If ���� denotes the measure of a set � �es-
sentially the total length of the set�, then Tf�S ;�����S f�,
Te�S ;�����Se�, and Tw�S ;�����Sw�. We should point out
that because �, � f, and �e are assumed to be piecewise con-
stant, all sets considered in this paper are unions of disjoint
intervals and hence are measurable.

Given a set S, define S0= �t�S ���t�=0� and S1= �t
�S ���t�=1�. Then define Te,0�S ;��=��Se

0� and Te,1�S ;��
=��Se

1�. Note that Te�S ;��=Te,0�S ;��+Te,1�S ;��. Also, note
that since �0,f�t�=1 whenever ��t�=1 for t� I1, it follows
that Tf�I1 ;���Tf�I1 ;�0�−Te,1�I1 ;��.

We should note that, although the optimal fill-empty pro-
file �0 may not necessarily be unique, if � denotes any other
optimal fill-empty profile, then we must have Te��0,T� ;��
=Te��0,T� ;�0�. It may be readily shown that n�,T�T�
=n�0,T�T�=0.

An � for which n�,T�T��0 is not optimal, for letting t�

denote when n�,T�t�=re�T− t� �by the intermediate value
theorem, such a t exists�, we have n�,P�T�=n�,P�t��
+reTe��t� ,T� ;���n�,P�t��+re�T− t��, with equality only oc-
curring when Te��t� ,T� ;��=re�T− t��. However, Te��t� ,T� ;��
=re�T− t�� implies that n�,T�T�=0, and so our claim is proved.

But this implies that rfTf��0,T� ;��=reTe��0,T� ;��
=reTe��0,T� ;�0�=rfTf��0,T� ;�0�, so that Tf��0,T� ;��
=Tf��0,T� ;�0�. Finally, Tw��0,T� ;��=T−Tf��0,T� ;��
−Te��0,T� ;��=T−Tf��0,T� ;�0�−Te��0,T� ;�0�=Tw��0,T� ;�0�.

Therefore, although the optimal fill-empty profile may not
be unique, the Tf, Te, and Tw values are uniquely specified.

D. Proof of the optimality of the fill-empty profile �0

For any fill-empty profile �, we have

n�,T�T� = n�,T�t�0
� + rfTf�I2;�� − reTe�I2;��

= rfTf�I1;�� − reTe�I1;�� + rfTf�I2;�� − reTe�I2;�� .

�4�

Since Tf�I2 ;��+Te�I2 ;���T− t�0
, we have

0 � n�,T�T� � rf�Tf�I1;�0� − Te,1�I1;��� − reTe�I1;��

+ rf�T − t�0
− Te�I2;��� − reTe�I2;�� , �5�

which may be rearranged to give

Te�I2;�� �
rfTf�I1;�0� − reTe�I1;��

re

−
rf

rf + re
�Te�I1;�0� + Te,1�I1;�� − Te�I1;��� ,

�6�

where the derivation of this inequality makes use of the iden-
tity rfTf�I1 ;�0�−reTe�I1 ;�0�=re�T− t�0

�.
We then obtain that
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n�,P�T� = re�Te�I1;�� + Te�I2;��� � rfTf�I1;�0�

−
rfre

rf + re
�Te�I1;�0� + Te,1�I1;�� − Te�I1;��� . �7�

Since n�0,P�T�=rfTf�I1 ;�0�, then if we can show that
Te�I1 ;�0�+Te,1�I1 ;��−Te�I1 ;��	0, we will have established
that n�,P�T��n�0,P�T�, thereby proving the maximality of �0.

So suppose Te�I1 ;�0�+Te,1�I1 ;��−Te�I1 ;��
0. Then, de-
fining I�t�= �0, t�, we may note that the function ��t�
�Te�I�t� ;�0�+Te,1�I�t� ;��−Te�I�t� ;�� is continuous and sat-
isfies ��0�=0, ��t�0

�
0. Let us then define t*=inf�t
� �0, t�0

� ���t�
0�. By continuity of � and from the definition
of inf, we have that t*
 t�0

, ��t*�=0 and that for any t� t*

there exists a t�� �t* , t� such that ��t��
0.
Now, by assumption ��t� is piecewise constant; hence, if �

is discontinuous at t*, then there exists an interval �t* , t*

+h�� I1 over which � is constant. If � is continuous at t*,
then there also exists an interval �t* , t*+h�� I1 over which �
is constant.

Suppose ��t�=1 on �t* , t*+h�. Then, for any h�
h, we
have that Te(I�t*+h�� ;�0)=Te(I�t*� ;�0), since the prescrip-
tion for �0 is to fill when ��t�=1 on I1. We also have that
Te,1(I�t*+h�� ;�)−Te(I�t*+h�� ;�) = Te,1(I�t*� ;�)−Te(I�t*� ;�)
+Te,1��t* , t*+h�� ;��−Te��t* , t*+h�� ;��. Since ��t�=1 on
�t* , t*+h��, it follows that Te,1��t* , t*+h�� ;��=Te��t* , t*

+h�� ;�� and hence that Te,1(I�t*+h�� ;�)−Te(I�t*+h�� ;�)
=Te,1(I�t*� ;�)−Te(I�t*� ;�). Therefore, ��t*+h��=��t*�, so
that ��t�=0 on �t* , t*+h�, contradicting the definition of t*.

So suppose ��t�=0 on �t* , t*+h�. Then it should be clear
that Te,1(I�t� ;�) is constant over �t* , t*+h�. If n�0,T�t*��0,
then according to our prescription there exists an h�� �0,h�
such that �e�t�=1 with n�0,T�t��0 over �t* , t*+h��. There-
fore, given h�� �0,h��, we have Te(I�t*+h�� ;�0)
=Te(I�t*� ;�0)+h�, while Te(I�t*+h�� ;�)=Te(I�t*� ;�)
+Te��t* , t*+h�� ;��. The result is that ��t*+h��=��t*�+h�
−Te��t* , t*+h�� ;��	��t*�=0. Therefore, ��t�	0 on �t* , t*

+h��, again contradicting the definition of t*.
So suppose that ��t�=0 on �t* , t*+h� with n�0,T�t*�=0.

Then,

n�,T�t*� = rfTf„I�t*�;�… − reTe„I�t*�;�… � rf�Tf„I�t*�;�0…

− Te,1„I�t*�;�…� − re�Te„I�t*�;�0… + Te,1„I�t*�;�…�

= n�0,T�t*� − �rf + re�Te,1„I�t*�;�…

= − �rf + re�Te,1„I�t*�;�… , �8�

which is only possible if n�,T�t*�=0 with Te,1(I�t*� ;�)=0.
But since n�,T�t*�=n�0,T�t*�=0, then since ��t�=0 on �t* , t*

+h�, it follows that n�,T�t�=n�0,T�t�=0 on �t* , t*+h�,
and hence Te,1��t* , t*+h�� ;��=Te��t* , t*+h�� ;��=Te��t* , t*

+h�� ;�0�=0 on for all h�� �0,h�, so that ��t�=��t*�=0 on
�t , t+h�, which is again a contradiction.

Since we have exhausted all possibilities, we have estab-
lished that ��t�0

�
0 leads to a contradiction. Therefore,
��t�0

�	0 and the proof is complete.

III. EXAMPLES OF OPTIMAL FILL-EMPTY PROFILES

For simplicity, we consider optimal fill-empty profiles
generated by a ��t� that is periodic over the time interval
�0,T�. Specifically, we consider a basic profile, denoted
��T1,T2�, defined by

��T1,T2��t� = 	1 if t � �0,T1� ,

0 if t � �T1,T1 + T2� .



Over the time interval �0,T�, we then define ��t� by setting
��t�=��T1,T2��t� on �0,T1+T2� and then imposing the period-
icity relation ��t�=��t+T1+T2�. We also assume that T
=N�T1+T2� for some positive integer N. An example of such
a profile is illustrated in Fig. 3.

A. Profile 1: Excess emptying time

If reT2	rfT1, then it should be apparent that an optimal
fill-empty profile, defined by our �0 prescription, is to fill
whenever ��t�=1 and to empty whenever ��t�=0 and
n�,T�t��0, until time T. For this profile, then, we have that
the optimal values of Tf, Te, and Tw are given by

Tf��0,T�;�0� = NT1,

Te��0,T�;�0� =
rf

re
NT1,

Tw��0,T�;�0� = N
reT2 − rfT1

re
, �9�

and so any other optimal fill-empty profile must fill exactly
when ��t�=1. Note that Tw only occurs in intervals where
��t�=0 (since Tf��0,T� ;�0�=NT1). Therefore, during these
periods, since there is a lack of available resource �analogous
to periods of night when making the analogy to sleep�, the
tank is either filling when there is nothing to fill it with
�analogous to wakefulness periods during lack of available
sensory information� or is emptying when the tank is already
empty �analogous to excess sleeping�. When ��t�=0, any
combination of filling, or emptying when nT=0, over these
time intervals will not affect the final value of nP�T�. Thus,
there is a considerable degree of freedom in choosing an
optimal fill-empty profile, which is consistent with the ob-
served breakdown in sleeping patterns in environments with
limited exposure to the sun �44�.

B. Profile 2: Lack of emptying time

Now consider the case when reT2
rfT1. Then at the end
of every resource availability cycle �n�T1+T2� , �n+1��T1

FIG. 3. Illustration of a periodic resource-availability profile.
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+T2��, we have that n�0,T increases by rfT1−reT2, as long as
we are before the final emptying phase. So, if n is chosen so
that n�rfT1−reT2��re�T−n�T1+T2�� but �n+1��rfT1−reT2�
�re�T− �n+1��T1+T2��, then we have t�0

� �n�T1+T2� , �n
+1��T1+T2��, which further implies that t�0

� �n�T1

+T2� ,n�T1+T2�+T1�. Therefore, n�,T�t�0
�=n�rfT1−reT2�

+rf�t�0
−n�T1+T2��=re�T− t�0

�.
Solving for t�0

, we obtain

t�0
= nT2 +

re

re + rf
T , �10�

from which it follows that

Tf��0,T�;�0� =
re

re + rf
T ,

Te��0,T�;�0� =
rf

re + rf
T ,

Tw��0,T�;�0� = 0. �11�

An interesting fill-empty profile that arises from this con-
dition is defined as follows: Over the interval �0,T�, �e�t�
=1 whenever ��t�=0. Whenever ��t�=1, � f�t� and �e�t� alter-
nate in being 1, with corresponding time lengths tf and te. To
determine these time lengths, we first assume that there are
M such cycles over each ��t�=1 interval of length T1, so that
tf + te=T1 /M. The net accumulation in the tank over each
such interval should be reT2=M�rftf −rete�, which may be
solved to give

tf =
1

M

re

rf + re
�T1 + T2� ,

te =
1

M

rfT1 − reT2

rf + re
. �12�

Note that rftf �rete and that Te��0,T� ;��=rf / �re+rf�T, so
that this profile is indeed an optimal one.

This solution profile is illustrated in Fig. 4. Essentially,
when the amount of time during which ��t�=0 is not suffi-
ciently long to process all of the resource that can fill the
tank, then one optimal solution profile is, during periods
when ��t�=1, to fill and empty the tank in alternating time
intervals of lengths tf and te, and then to empty the tank

whenever ��t�=0. We argue that the te empty periods are
analogous to the phenomenon of “microsleep” that occurs
during sleep deprivation.

In general, we claim that any optimal solution profile for
this form of ��t� will have �e�t�=1 whenever ��t�=0. Other-
wise, we obtain rf / �rf +re�T=Te��0,T� ;��=Te,0��0,T� ;��
+ Te,1��0,T� ; �� 
 NT2 + Te,1��0,T� ; �� ⇒ Te,1��0,T� ; ��
�N�rfT1−reT2� / �rf +re�.

But this implies that Tf��0,T� ;���NT1−Te,1��0,T� ;��

NT1−N�rfT1−reT2� / �rf +re�=re / �re+rf�T⇒⇐. With this
contradiction, our claim is proved.

C. Profile 3: Union of two resource availability profiles

As a final example for this subsection, we consider a re-
source availability profile given by

��t� = � ��T1,T2��t� if t � �0,T1 + T2� ,

��T1,T2���t − T1 − T2� if t � �T1 + T2,�

�T = 2T1 + T2 + T2�� ,
�

where reT2�
rfT1
reT2. Then it is possible to show that

Tf��0,T�;�0� = T1 +
re

re + rf
�T1 + T2�� ,

Te��0,T�;�0� =
rf

re
T1 +

rf

re + rf
�T1 + T2�� ,

Tw��0,T�;�0� =
reT2 − rfT1

re
. �13�

We now show that this uniquely determines Tf��0,T1

+T2� ;�0�, Tf��T1+T2 ,T� ;�0�, Te��0,T1+T2� ;�0�, Te��T1

+T2 ,T� ;�0�, Tw��0,T1+T2� ;�0�, and Tw��T1+T2 ,T� ;�0�.
Note that Tf��0,T� ;�0�	Tf��0,T1+T2� ;�0�+

re

re+rf
�T1

+T2��⇒Tf��T1+T2 ,T� ;�0�	
re

re+rf
�T1+T2��. Therefore, Te��T1

+T2 ,T� ;�0��
rf

re+rf
�T1+T2��. However, n�0,T�T�=0	rfTf��T1

+T2 ,T� ;�0�−reTe��T1+T2 ,T� ;�0� 	
rfre

re+rf
�T1+T2�� − reTe��T1

+T2 ,T� ;�0�⇒Te��T1+T2 ,T� ;�0�	
rf

re+rf
�T1+T2��, and so

Te��T1+T2 ,T� ;�0�=
rf

re+rf
�T1+T2��. But this implies that

Tf��T1+T2 ,T� ;�0��
re

re+rf
�T1+T2��, so Tf��T1+T2 ,T� ;�0�

=
re

re+rf
�T1+T2��. This further implies that Tw��T1+T2 ,T� ;�0�

=0, so that Tw��0,T1+T2� ;�0�=
reT2−rfT1

re
. Finally, we obtain

Tf��0,T1+T2� ;�0�=T1 and Te��0,T1+T2� ;�0�=
rf

re
T1.

Summarizing the results, we have

Tf��0,T1 + T2�;�0� = T1,

Tf��T1 + T2,T�;�0� =
re

re + rf
�T1 + T2�� 
 T1,

Te��0,T1 + T2�;�0� =
rf

re
T1,

FIG. 4. Illustration of the “microsleep” solution profile.
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Te��T1 + T2,T�;�0� =
rf

rf + re
�T1 + T2�� � T2�,

Tw��0,T1 + T2�;�0� =
reT2 − rfT1

re
,

Tw��T1 + T2,T�;�0� = 0. �14�

Therefore, maximal processing of the external resource still
requires emptying the tank when ��t�=1 on the interval �T1

+T2 ,T�. In making the analogy with sleep, this implies that
excess sleep in a certain time interval will not prevent sleep
deprivation in a later time interval when the period of re-
source availability exceeds the period when the resource may
be processed. Intuitively, this makes sense, since once the
brain has performed all of the information processing and
upkeep tasks associated with sleep, further sleep will not
prevent the accumulation of sleep-related brain tasks during
a later cycle.

IV. AGENT-BASED MODEL

In this section, we introduce our agent-based, three-
process model, whereby an external resource is converted
into a final product in a series of three steps. We set up
dynamical equations governing the production of the final
product for both the temporally differentiated and nondiffer-
entiated cases �see Fig. 5�.

A. Definition of the model

Our model consists of some compartment of fixed volume
V, into which flows a resource, denoted R, at some fixed rate
fR. This resource is processed into a final product, denoted P,
via a series of three agent-mediated, or in the language of
chemical kinetics, enzyme-catalyzed, steps.

In the first step, an enzyme, denoted E1, binds to R and
then converts R into an intermediate I1. In the second step, an
enzyme, denoted E2, binds to I1 and then converts I1 into an
intermediate I2. In the third and final step, an enzyme, de-

noted E3, binds to I2 and then converts I2 into the final prod-
uct P.

The resource R and intermediates I1 and I2 have finite
lifetimes in the compartment, defined by first-order decay
constants kD,1, kD,2, and kD,3, respectively. These decay terms
can be due to various factors, such as diffusion out of the
compartment, or simply the physical decay of the compo-
nents themselves. In the context of networked systems and
data processing, these decay constants can also correspond to
a finite lifetime during which an information packet is rel-
evant �say stock information that is used by an investor to
decide whether or not to invest in a given stock�.

For greater generality, we also assume that the resource R
and intermediates I1 and I2 can decay when bound to their
respective enzymes. The decay constants are given by kD,1� ,
kD,2� , and kD,3� , respectively. We assume that 0�kD,i� �kD,i, for
i� �1,2 ,3�.

In the language of chemical kinetics, the set of reactions
in the compartment is given by

R → decay products �first-order rate constant kD,1� ,

E1 + R → E1R �second-order rate constant k11� ,

E1R → E1 + decay products �first-order rate constant kD,1� � ,

E1R → E1 + I1 �first-order rate constant k12� ,

I1 → decay products �first-order rate constant kD,2� ,

E2 + I1 → E2I1 �second-order rate constant k21� ,

E2I1 → E2 + decay products �first-order rate constant kD,2� � ,

E2I1 → E2 + I2 �first-order rate constant k22� ,

I2 → decay products �first-order rate constant kD,3� ,

E3 + I2 → E3I2 �second-order rate constant k31� ,

E3I2 → E3 + decay products �first-order rate constant kD,3� � ,

E3I2 → E3 + P �first-order rate constant k32� . �15�

We now define the following quantities: We define r, i1,
and i2 to be the number of particles of R, I1, and I2, respec-
tively. We define eb,i, ef ,i, and ei to be the number of bound
particles of enzyme Ei, the number of free particles of en-
zyme Ei, and the total number of particles of enzyme Ei,
where i�1,2 ,3. Note that ei=eb,i+ef ,i.

With these definitions, the system of ordinary differential
equations governing the dynamics inside the compartment is
given by

dr

dt
= fR − 
 k11

V
��e1 − eb,1�r − kD,1r ,

deb,1

dt
= 
 k11

V
��e1 − eb,1�r − �k12 + kD,1� �eb,1,

E1/E2 level -- Temporal differentiation

E3 level -- Temporal differentiation

E1/E2 level -- No temporal differentiation

E3 level -- No temporal differentiation

Time

Agent number

FIG. 5. Illustration of the time dependence of various enzyme
levels in both the temporally differentiated and undifferentiated la-
bor strategies.
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di1

dt
= k12eb,1 − 
 k21

V
��e2 − eb,2�i1 − kD,2i1,

deb,2

dt
= 
 k21

V
��e2 − eb,2�i1 − �k22 + kD,2� �eb,2,

di2

dt
= k22eb,2 − 
 k31

V
��e3 − eb,3�i2 − kD,3i2,

deb,3

dt
= 
 k31

V
��e3 − eb,3�i2 − �k32 + kD,3� �eb,3. �16�

B. Temporal differentiation in the three-enzyme
compartment model

Temporal differentiation can occur in our model if we do
not assume that e1, e2, and e3 are fixed, but rather can oscil-
late in time. For the purposes of this paper, we will assume
that e1, e2, and e3 oscillate in such a way that e1=e1

+, e2
=e2

+, and e3=e3
− over some time period of length T1, followed

by a time period of length T2 where e1=e1
−�e1

+, e2=e2
−�e2

+,
and e3=e3

+	e3
−. We assume that the total number of enzymes

remains fixed, however, so that e1
++e2

++e3
−=e1

−+e2
−+e3

+.
Essentially, if we switch from an enzyme-based viewpoint

to an agent-based viewpoint, our model assumes that agents
can switch from one set of tasks to another. In this model, the
agents alternate between focusing on the first two processes
and the third process. In chemical kinetics notation, we have

E1/2 ↔ E3. �17�

C. Limiting forms of the model

We will now study how our model behaves when e1+e2
+e3 and kD,3 may each be regarded as small in some sense.
The criterion for smallness will be defined later, once we
have established the behavior of the model in these regimes.

To begin, we note from the previous subsection that the
various enzyme numbers fluctuate in time. More precisely,
there exist T1 ,T2�0 such that for every integer s, the total
enzyme numbers for each enzyme are at e1

+, e2
+, and e3

−, re-
spectively, during the time interval �s�T1+T2� ,s�T1+T2�
+T1�, while during the time interval �s�T1+T2�+T1 , �s
+1��T1+T2��, the enzyme numbers are at e1

−, e2
−, and e3

+.
If we define, for i� �1,2 ,3�,

ēi =
ei

+ + ei
−

2
�18�

and


i =
ei

+ − ei
−

ei
+ + ei

− , �19�

then it may be readily shown that

ei
� = ēi�1 � 
i� . �20�

For fixed values of 
1 and 
2, we wish to develop a form
for the first four equations assuming that ē1 and ē2 are small.
The overall strategy is as follows: Because I2 is the interme-
diate that feeds into the third reaction, our goal is to deter-
mine the rate of production of I2 when ē1 and ē2 are small.
By this we mean that we seek to determine, with respect to
ē1 and ē2, the lowest-order term contributing to the produc-
tion rate of I2.

If we let r0 denote r when ē1=0, we obtain

dr0

dt
= fR − kD,1r0. �21�

If we define eb,1,1= ��eb,1 /�ē1�ē1=0, we obtain

deb,1,1

dt
= 
 k11

V
��1 � 
1�r0 − �
 k11

V
�r0 + k12 + kD,1� �eb,1,1.

�22�

If we define i1,1= ��i1 /�ē1�ē1=ē2=0, we obtain

di1,1

dt
= k12eb,1,1 − kD,2i1,1. �23�

Note that eb,2=0 when either ē1=0 or ē2=0. Therefore,
the lowest-order derivative of eb,2 that is possibly nonvanish-
ing at �ē1 , ē2�= �0,0� is �2eb,2 / ��ē1�ē2�. Defining eb,2,1

= ��2eb,2 / ��ē1�ē2���ē1,ē2�=�0,0�, we obtain

deb,2,1

dt
= 
 k21

V
��1 � 
2�i1,1 − �k22 + kD,2� �eb,2,1. �24�

For the final two equations, we assume that kD,3=kD,3� =0,
giving

di2

dt
= k22eb,2 − 
 k31

V
��e3 − eb,3�i2,

deb,3

dt
= 
 k31

V
��e3 − eb,3�i2 − k32eb,3. �25�

D. Long-term behavior of the model

In the absence of temporal differentiation �
1=
2=
3

=0�, the values of e1, e2, and e3 remain constant, and so we
expect the dynamics to converge to a steady state. With tem-
poral differentiation, the values of e1, e2, and e3 oscillate
between two sets of values over a well-defined time period
T1+T2. In this situation, we cannot expect the dynamics to
settle into a steady-state solution, but rather into a periodic
solution.

In this subsection, we will compare the long-term behav-
ior of the model in the absence of temporal differentiation
with a temporally differentiated labor strategy where 
1
=
2=
3=1. Here, the enzymes devote themselves entirely to
the first two tasks over a time interval of length T1 and then
devote themselves entirely to the third task over a time in-
terval of length T2.
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1. No temporal differentiation „�1=�2=�3=0…

When 
1=
2=
3=0, the long-term solution is simply a
steady-state solution. Setting the left-hand sides of the four
linearized equations to 0 gives

r0 =
fR

kD,1
,

eb,1,1 =

 k11

V
�
 fR

kD,1
�

k12 + kD,1� + 
 k11

V
�
 fR

kD,1
� ,

i1,1 =
k12

kD,2


 k11

V
�
 fR

kD,1
�

k12 + kD,1� + 
 k11

V
�
 fR

kD,1
� ,

eb,2,1 =
�k21/V�

k22 + kD,2�

k12

kD,2


 k11

V
�
 fR

kD,1
�

k12 + kD,1� + 
 k11

V
�
 fR

kD,1
� . �26�

If we define A via

A = k22
�k21/V�

k22 + kD,2�

k12

kD,2


 k11

V
�
 fR

kD,1
�

k12 + kD,1� + 
 k11

V
�
 fR

kD,1
� , �27�

then we obtain that the rate of production of I2 is Aē1ē2.
Because the production rate of P is given by k32eb,3 and

because eb,3�e3, the production rate of P is bounded from
above by k32e3. Therefore, if we can find a steady-state so-
lution where the production rate of P is given by k32e3, then
we will have found a solution that maximizes system output.

In order for the production rate of P to equal e3, we must
have that eb,3=e3; that is, all of the E3 molecules must be
bound to an I2 molecule. If we solve for the steady-state
value of eb,3, we obtain that

eb,3,ss =

 k31

V
�i2,ss

k32 + 
 k31

V
�i2,ss

e3, �28�

where the subscript ss signifies “steady state.”
Note then that eb,3,ss is 0 when i2,ss=0 and increases to e3

as i2,ss→�. Therefore, the maximal production rate of P is
obtained in the limiting case of i2,ss→�. While this condi-
tion is impossible to reach in practice, we can always choose
a steady state where i2,ss can be made as large as possible, so
that the production rate of P can be made as close to the
maximal value as desired. The reason for this is that kD,3
=kD,3� =0. As a result, the only way that I2 can be lost is via
its conversion to P. If we set i2→� and choose parameters
so that the rate of production of I2 is equal to the rate of

consumption, then we will have a steady state where the
production rate of P is maximal.

When i2=�, the rate of production of P is given by k32ē3.
Therefore, at steady state,

Aē1ē2 = k32ē3. �29�

Now, defining etot= ē1+ ē2+ ē3, �= �ē1+ ē2� /etot, and �
= ē1 / �ē1+ ē2�, we have that the steady-state production rate of
P is

A�2��1 − ��etot
2 = k32�1 − ��etot. �30�

The steady-state production rate of P is maximized when
�=1 /2, and so we wish to solve

�2 +
1

�etot
� −

1

�etot
= 0, �31�

where ��A / �4k32�.
This gives

1 − � =
1 + 2�etot − �1 + 4�etot

2�etot
. �32�

Since this value of � is the one obtained for the tempo-
rally undifferentiated system, we denote the � derived here
as �undif f.

2. Temporal differentiation with �1=�2=�3=1

When 
1=
2=
3=1, the enzyme levels for enyzmes E1
and E2 are at their maximal levels during the time interval
�s�T1+T2� ,s�T1+T2�+T1� and are not present during the time
interval �s�T1+T2�+T1 , �s+1��T1+T2��. During the labor
cycles where the enzymes are focused on the third reaction,
e1=eb,1=e2=eb,2=0, so that when the enzymes switch to the
first two reactions in the following labor cycle, eb,2 starts out
at 0 and rises to a steady-state value.

Therefore, in order to maximize the average production
rate of I2, we want to choose a large value of T1, so that the
time it takes for eb,2 to rise to its steady-state value is small
compared to T1. Mathematically, this means that we want to
take T1→�, so that the average production rate of I2 is sim-
ply given by the steady-state production rate.

When e1=e1
+=2ē1 and e2=e2

+=2ē2, the steady-state pro-
duction rate of P is 4Aē1ē2, and so, when T1 is large, the total
amount of I2 that is produced during the time period T1 is
given by

�i2 = 4Aē1ē2T1. �33�

To ensure periodicity of the solution, T2 must be such that
the amount of I2 consumed in the third step is equal to the
amount of I2 accumulated. Assuming that the amount of I2 is
large at all times �as with the undifferentiated case, this as-
sumption maximizes the overall production rate of P�, the
amount of I2 consumed is given by 2k32ē3T2. We then have

A�2ē1��2ē2�T1 = k32�2ē3�T2. �34�
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Now, since all the enzymes are focused on either the first
two tasks or the third task in the temporally differentiated
model, it follows that etot=2ē1+2ē2=2ē3. Defining �
=2ē1 /etot gives

A��1 − ��etot
2 T1 = k32etotT2. �35�

Note that the average production rate of P is simply given
by k32etotT2 / �T1+T2�. We can determine the optimal split be-
tween the two work cycles that maximizes the average pro-
duction rate of P.

Defining �=T1 / �T1+T2�, we get that the average produc-
tion rate of P is simply k32�1−��etot. Dividing both sides of
the previous equation by T1+T2 gives

A��1 − ���etot
2 = k32�1 − ��etot. �36�

As with the steady-state solution, we can maximize the
output of P when �=1 /2, and so, defining � as before, we
obtain

1 − � =
�etot

1 + �etot
. �37�

To distinguish this � from the � defined in the temporally
undifferentiated case, we redenote the � defined in this sub-
section by �dif f.

Although a given realization of the system must have fi-
nite values of i2, T1, and T2, the production rate of P is
maximized as i2, T1, and T2 take on arbitrarily large values,
where the T1 to T2 ratio is held fixed. This is the basis for
considering steady states and periodic solutions where i2, T1,
and T2 are taken to be infinite. We can consider such limiting
forms of the model because kD,3=kD,3� =0, so that we can
allow the cycle times and the value of i2 to take on arbitrarily
large values without worrying about loss of intermediate that
can reduce the overall process efficiency.

E. Comparison of system output with and without
temporal differentiation

It may be shown that 1−�dif f �1−�undif f for �etot�0, so
that temporal differentiation leads to a rate of production of
P that is faster than the undifferentiated case �see Fig. 6�. It
may also be shown that, as �etot increases from 0 to �, the
ratio �1−�dif f� / �1−�undif f� increases from 1 to a maximum
of 4 /3 at �etot=2 and then decreases to 1. This implies that
the temporally differentiated labor strategy can achieve a
33% greater production rate of P than the undifferentiated
strategy.

F. Small-ē1 , ē2 criterion

The analytical solution of the first four differential equa-
tions governing our model explicitly made use of the as-
sumption that ē1 and ē2 are small. We therefore need to in-
vestigate what the criteria for smallness are.

When ē1 and ē2 are small, the rate of the first reaction is
given by

k12eb,1 = k12


 k11

V
�
 fR

kD,1
�

k12 + kD,1� + 
 k11

V
�
 fR

kD,1
� ē1. �38�

As ē1 increases, there will eventually be enough enzyme
E1 present to process all of the incoming resource. At this
point, the reaction rate becomes fR. Therefore, the criterion
that ē1 be small is

k12eb,1 � fR ⇒ ē1 �
fR

k12
+

kD,1

�k11/V�

1 +

kD,1�

k12
� . �39�

Now, in the small-ē1 , ē2 regime, the rate of the second
reaction is given by

k22eb,2 = k22
�k21/V�

k22 + kD,2�

k12eb,1

kD,2
ē2. �40�

To determine the small-ē1 , ē2 criterion for the second re-
action, note that at steady state, the rate of production of I2
for small ē2 is given by the small-ē1 formula for the rate of
production of I1, except with the replacements fR→k12eb,1,
k12→k22, kD,1→kD,2, kD,1� →kD,2� , and k11→k21. This gives

k22eb,2 = k22


 k21

V
�
 k12eb,1

kD,2
�

k22 + kD,2� + 
 k21

V
�
 k12eb,1

kD,2
� ē2. �41�

As with the criterion for small ē1, this formula only holds
when

ē2 �
k12eb,1

k22
+

kD,2

�k21/V�

1 +

kD,2�

k22
� . �42�

However, once this inequality holds, the only way for the
rate of the second reaction to reduce to the formula in Eq.
�27� in the limit of small ē2 is if

FIG. 6. �Color online� Comparison of the production rate of
product P, as measured by the factor 1−�, for the temporally dif-
ferentiated and undifferentiated pathways.
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k22 + kD,2� � 
 k21

V
�
 k12eb,1

kD,2
� , �43�

which implies that

ē1 � �k22 + kD,2� �
kD,2

�k21/V�� 1

k12
+

kD,1

�k11/V�

1 +

kD,1�

k12
� 1

fR
� .

�44�

It also implies that the above inequality for ē2 reduces to

ē2 �
kD,2

�k21/V�

1 +

kD,2�

k22
� . �45�

Setting ē1= ē2 in order to maximize the reaction rate and
combining all the inequalities together, we obtain

ē1, ē2 �
fR

k12
+

kD,1

�k11/V�

1 +

kD,1�

k12
� ,

kD,2

�k21/V�

1 +

kD,2�

k22
� ,

�k22 + kD,2� �
kD,2

�k21/V�� 1

k12
+

kD,1

�k11/V�

1 +

kD,1�

k12
� 1

fR
� . �46�

If we take fR→�, then the first inequality for small ē1 , ē2
is automatically satisfied. If we also assume that k12=k22,
then the second and third inequalities are equivalent.

Now, in the limit fR→�, we have

�etot =
k12�k21/V�

4k32kD,2
1 +
kD,2�

k22
� etot, �47�

so that, if we want �etot to equal some specified value, de-
noted �, we obtain

etot = 4�
k32

k12

kD,2

�k21/V�

1 +

kD,2�

k22
� . �48�

Combining this with the requirement that ē1 , ē2
� �kD,2 / �k21 /V���1+kD,2� /k22�, we obtain

k32

k12
�

1

2�
. �49�

Therefore, by choosing values for k12=k22 and k32 so that
k32 /k12 is sufficiently small, we can guarantee that we will be
in a parameter regime where the small-ē1 , ē2 criterion ap-
plies, while at the same time achieving a prespecified value
for �etot. As the value of �etot increases, the ratio k32 /k12
must be made correspondingly smaller so that the small-etot
criterion is valid at the given value of �=�etot.

G. Numerical example

We chose to test the plausibility of our theory with a
simple numerical example. We considered a system with the
following parameter values: k12=k22=kD,2=kD,2� =1000,
k21 /V=1, k32=6.25, and etot=100. With the assumption that

fR→�, we obtain �etot=2. These parameters were chosen so
that our system would be in a regime where the small-ē1 , ē2
approximation holds.

It should be noted that we have not specified the values of
fR, k11 /V, kD,1, kD,1� , k31 /V, kD,3, or kD,3� . The reason for this is
that we are assuming that fR→� and that i2→� with kD,3
=kD,3� =0. Therefore, the steady-state value of r→�, so that
the rate of the first reaction is simply k12e1, since eb,1=e1
under these conditions. Similarly, the rate of the third reac-
tion is simply k32e3.

For the temporally undifferentiated case, we numerically
solve for the steady-state production rate of I2 and compare it
to the steady-state production rate of P. The steady state for
the whole process is found by adjusting � until the two pro-
duction rates are equal. We then find the value of � which
maximizes the overall steady-state production rate of P.

For the temporally differentiated case, we consider very
long cycle times, so that we may assume steady-state dynam-
ics in each phase of the temporal labor cycle. We then find
the value of � such that the average production rate of I2
over a full cycle is equal to the average production rate of P
over a full cycle. This corresponds to the steady state for the
whole process. We then find the value of � which maximizes
the overall steady-state production rate of P.

While this method might seem somewhat cumbersome
and limited to only solving certain special cases of the dy-
namics, we used it because we found that direct numerical
integration of the ordinary differential equations was difficult
for parameter values corresponding to the small-ē1 , ē2 re-
gime. In this regime, we obtained a stiff system of differen-
tial equations that required small time steps, on the one hand,
and long integration times on the other. Since the numerical
scheme we used provides the steady-state or periodic solu-
tion to arbitrarily desired accuracy �under the assumptions
described above�, we decided to numerically solve our sys-
tem in this much simpler manner.

For the undifferentiated case, we found a maximum pro-
duction rate of 309, under the conditions �=0.506 and �
=0.50. For comparison, theory predicts that �undif f =0.500
and �=0.50.

For the differentiated case, we found a maximum produc-
tion rate of 407, under the conditions �=0.351 and �=0.53.
For comparison, theory predicts that �dif f =0.333 and �
=0.50.

Therefore, for the parameters chosen, we found that a
temporally differentiated labor strategy led to a 32% increase
in the total production rate of P, in good agreement with the
theoretical prediction of 33% for the parameter values cho-
sen.

V. DISCUSSION

A. When can a temporally differentiated process outperform
a nondifferentiated process?

In the tank-filling model, we found that a maximal
amount of resource is processed if the tank fills when re-
source is available and empties when resource is not avail-
able. Although this result is obvious, it leads to fill-empty
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profiles that parallel various aspects of the sleep-wake cycle
in diurnal organisms.

For the agent-based model, which assumes a continuous
flow of resource, we have that if kD,3�0, then the temporally
differentiated pathway will only perform optimally with a
finite cycle time. For if the time period during which the
agents focus on the first two subtasks is infinite, then the
accumulated I2 will decay away, resulting in a low produc-
tion rate of P. As kD,3 increases, the optimal cycle time will
decrease.

This analysis suggests that when kD,3 becomes sufficiently
large, the advantage for a temporally differentiated labor
strategy will disappear entirely. The reason for this is that
when the agents switch tasks, there is a delay time during
which the system reaches its new steady state, where the
overall process rate is maximized. When kD,3 is small, this
delay time is a small fraction of the overall cycle time, so the
effect on the overall process rate is negligible. However,
when kD,3 is large, this delay time is a significant fraction of
the overall cycle time, and so the reduction in overall process
rate can be sufficient to eliminate the advantage for the tem-
porally differentiated strategy.

Therefore, as a general rule, temporal differentiation can
only outperform a nontemporally differentiated labor strat-
egy if there are process intermediates that have large charac-
teristic decay times. This affords the agents the opportunity
to focus on one set of subtasks at a time, without significant
loss of the corresponding process intermediates.

B. Possible implications for sleep and circadian rhythms

The implications of the results presented here are that
sleep emerges because the brain can process more tasks if it
adopts a temporally differentiated labor strategy. In this case,
the individual agents may be taken to correspond to indi-
vidual neurons, each of which is involved in performing
various tasks associated with proper brain function �within
each neuron, the individual agents may be taken to be the
various biochemicals involved with proper neuronal func-
tion�. If the neurons collectively engage in certain brain sub-
tasks together, they can possibly perform each subtask more
efficiently than if they engage in various subtasks simulta-
neously. Presumably, the more tasks a brain can accomplish
within a given amount of time, the greater the survival ad-
vantage for the organism, providing an evolutionary selec-
tion pressure for temporally differentiated labor strategies.

We have seen that an optimal ratio between the times
devoted to two different sets of process subtasks emerges
even with a constant inflow of external resource. In the con-
text of sleep, this suggests a natural sleep cycle that can exist
independently of any external day-night regulation. This also
suggests an evolutionary basis for sleep that could apply to
nocturnal organisms �36�. This being said, the presence of a
day-night cycle could nevertheless regulate the exact loca-
tion of the various subtask time intervals. By analogy with
the tank-filling model, it presumably makes sense for most
organisms to remain alert during the day, when external in-
formation is most available, and to process that information
at night, when external information is less available. The

ability to avoid predators and to hunt stealthily are probably
the major selection pressures driving the emergence of noc-
turnal organisms.

We also argue that the agent-based model presented in
this paper suggests an evolutionary basis for the emergence
of distinct REM and non-REM sleep states from an earlier
undifferentiated sleep state. As brain complexity increases
and the amount of information that must be processed during
the sleep state increases, it becomes more efficient for the
brain to oscillate between various information processing
and consolidation subtasks associated with the sleep state
itself �35�.

Finally, the models presented in this paper suggest that
temporal differentiation may not only provide an evolution-
ary basis for the emergence of sleep, but for circadian
rhythms in general. That is, the various tasks associated with
proper organismal function may be performed most effi-
ciently if different tasks are performed at different times and
in a well-defined manner. By having a fixed daily routine for
performing the various “housekeeping chores” necessary for
proper organismal function, the organism may be able to
optimally carry out the various tasks necessary for organis-
mal survival.

VI. CONCLUSIONS AND FUTURE RESEARCH

This paper presented two simplified models showing that
a temporally differentiated labor strategy can lead to in-
creased system output. The first model considered the emp-
tying and filling of a tank in the presence of a time-varying
resource-availability profile. The second model considered a
three-step process for the conversion of some external re-
source into a final product. In both models we showed that
oscillating between the various process subtasks could lead
to a greater system output than if all subtasks were per-
formed simultaneously.

The two models presented in this paper suggest that a
possible evolutionary basis for phenomena such as sleep and
circadian rhythms is that it is optimal for an organism to
oscillate between performing various tasks necessary for or-
ganismal survival. A temporally differentiated labor strategy
for performing these various tasks requires less energy and
time for the same amount of system output than an undiffer-
entiated strategy. As is the case for task completion by hu-
man agents, it may make sense for an organism to adopt a set
routine, or “work plan,” for carrying out various tasks in an
optimal manner.

The second model considered in this paper shows that
external factors may not be necessary for a temporally dif-
ferentiated work plan to be an optimal labor strategy. This
suggests that temporal differentiation may provide an evolu-
tionary basis for sleep that applies to nocturnal organisms
and may also provide an evolutionary basis for the emer-
gence of distinct REM and non-REM sleep states.

Although external factors may not be necessary for a tem-
porally differentiated work plan to be optimal, the first model
considered in this paper nevertheless shows that it is optimal
for a system to adopt a work plan that is synchronized with
the external resource-availability profile. In the context of
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sleep and circadian rhythms, this provides a natural explana-
tion for the observation that the day-night cycle serves as a
powerful regulator of the sleep-wake cycle and of other cir-
cadian cycles.

For future research, we would like to develop more so-
phisticated models that consider the interaction of a large
collection of system components �e.g., neurons� and to study
the optimal temporally differentiated labor strategies that
emerge. An interesting question is whether, given certain
kinds of network topologies, universal scaling laws emerge
that allow the prediction of various aspects of the sleep-wake
cycle in one organism, based on known aspects of the sleep-
wake cycle in another organism. If a model based on the
concept of temporal differentiation could be used to make
quantitative predictions of various aspects of the sleep-wake
cycle in various organisms, this would provide compelling
evidence for temporal differentiation as the evolutionary ba-
sis for the emergence of sleep.

We should note that, although mathematical modeling of
sleep-wake cycles and circadian rhythms has been done be-
fore �45–48�, such models have analyzed these rhythms from
the perspective of coupled-oscillator dynamics and have
therefore not addressed the evolutionary basis for the emer-

gence of such oscillator systems in the first place. This paper,
by contrast, developed simple mathematical models that sug-
gests that temporal differentiation may be an optimal labor
strategy in certain cases, so that organisms that employ tem-
porally differentiated labor strategies for these cases may
have a survival advantage.

Finally, we also recognize that temporal differentiation is
a general concept that does not only apply to sleep and cir-
cadian rhythms, but may also be useful for understanding
oscillatory dynamics in other complex systems. Temporal
differentiation may also have practical applications as a tool
for maximizing productivity in various multistep processes.
If this is indeed the case, then it is possible that sleep is a
subtle manifestation of a fairly general optimization strategy,
so that tools from game theory, mathematical economics, and
operations research could be used to analyze the phenom-
enon of sleep.
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